Ooyama, K. Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci. 26, 3–40 (1969).
Emanuel, K. A. An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci. 43, 585–605 (1986).
Emanuel, K. Tropical cyclones. Annu. Rev. Earth Planet. Sci. 31, 75–104 (2003).
Kaplan, J. & DeMaria, M. A simple empirical model for predicting the decay of tropical cyclone winds after landfall. J. Appl. Meteorol. Climatol. 34, 2499–2512 (1995).
Kaplan, J. & DeMaria, M. On the decay of tropical cyclone winds after landfall in the New England area. J. Appl. Meteorol. Climatol. 40, 280–286 (2001).
Emanuel, K. A. The dependence of hurricane intensity on climate. Nature 326, 483–485 (1987).
Emanuel, K. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436, 686–688 (2005).
Elsner, J. B., Kossin, J. P. & Jagger, T. H. The increasing intensity of the strongest tropical cyclones. Nature 455, 92–95 (2008).
Knutson, T. et al. Tropical cyclones and climate change assessment: Part I. Detection and attribution. Bull. Am. Meteorol. Soc. 100, 1987–2007 (2019).
Bhatia, K. T. et al. Recent increases in tropical cyclone intensification rates. Nat. Commun. 10, 3942 (2019).
Landsea, C. W. & Franklin, J. L. Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Weath. Rev. 141, 3576–3592 (2013).
Rayner, N. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 108, 4407 (2003).
Eliassen, A. On the Ekman layer in a circular vortex. J. Meteorol. Soc. Jpn. 49A, 784–789 (1971).
Eliassen, A. & Lystad, M. The Ekman layer of a circular vortex—a numerical and theoretical study. Geophys. Norv. 31, 1–16 (1977).
Montgomery, M. T., Snell, H. D. & Yang, Z. Axisymmetric spindown dynamics of hurricane-like vortices. J. Atmos. Sci. 58, 421–435 (2001).
Murakami, H. & Wang, B. Future change of North Atlantic tropical cyclone tracks: projection by a 20-km-mesh global atmospheric model. J. Clim. 23, 2699–2721 (2010).
Colbert, A. J., Soden, B. J., Vecchi, G. A. & Kirtman, B. P. The impact of anthropogenic climate change on North Atlantic tropical cyclone tracks. J. Clim. 26, 4088–4095 (2013).
Wallace, J. M. & Hobbs, P. V. Atmospheric Science: An Introductory Survey Vol. 92 (Elsevier, 2006).
Tuleya, R. E. & Kurihara, Y. A numerical simulation of the landfall of tropical cyclones. J. Atmos. Sci. 35, 242–257 (1978).
Tuleya, R. E. Tropical storm development and decay: sensitivity to surface boundary conditions. Mon. Weath. Rev. 122, 291–304 (1994).
Simpson, R. H. & Riehl, H. The Hurricane And Its Impact (Louisiana State Univ. Press, 1981).
Bloemer, M. S. Climatology and Analysis of the Decay of Tropical Cyclones Making Landfall in the US from the Atlantic Basin. Master’s thesis, Florida State Univ. (2009).
Chen, J. & Chavas, D. R. The transient responses of an axisymmetric tropical cyclone to instantaneous surface roughening and drying. J. Atmos. Sci. 77, 2807–2834 (2020).
Smith, S. W. The Scientist And Engineer’s Guide To Digital Signal Processing Ch. 15 (California Technical Pub., 1997).
Bryan, G. H. & Fritsch, J. M. A benchmark simulation for moist nonhydrostatic numerical models. Mon. Weath. Rev. 130, 2917–2928 (2002).
Bryan, G. H. & Rotunno, R. The maximum intensity of tropical cyclones in axisymmetric numerical model simulations. Mon. Weath. Rev. 137, 1770–1789 (2009).
Bryan, G. H. Effects of surface exchange coefficients and turbulence length scales on the intensity and structure of numerically simulated hurricanes. Mon. Weath. Rev. 140, 1125–1143 (2012).
Emanuel, K. Assessing the present and future probability of hurricane Harvey’s rainfall. Proc. Natl Acad. Sci. USA 114, 12681–12684 (2017).
Keellings, D. & Hernández Ayala, J. J. Extreme rainfall associated with hurricane Maria over Puerto Rico and its connections to climate variability and change. Geophys. Res. Lett. 46, 2964–2973 (2019).
Kossin, J. P. A global slowdown of tropical-cyclone translation speed. Nature 558, 104–107 (2018).
Zhang, G., Murakami, H., Knutson, T. R., Mizuta, R. & Yoshida, K. Tropical cyclone motion in a changing climate. Sci. Adv. 6, eaaz7610 (2020).
Elsner, J. B. Tracking hurricanes. Bull. Am. Meteorol. Soc. 84, 353–356 (2003).
Kossin, J. P., Camargo, S. J. & Sitkowski, M. Climate modulation of North Atlantic hurricane tracks. J. Clim. 23, 3057–3076 (2010).
Rogers, R. E. & Davis, R. E. The effect of coastline curvature on the weakening of Atlantic tropical cyclones. Int. J. Climatol. 13, 287–299 (1993).
Kossin, J. P., Emanuel, K. A. & Vecchi, G. A. The poleward migration of the location of tropical cyclone maximum intensity. Nature 509, 349–352 (2014).
Ho, F. P., Su, J. C., Hanevich, K. L., Smith, R. J. & Richards, F. P. Hurricane climatology for the Atlantic and Gulf coasts of the United States. NOAA Technical Report NWS 38, https://coast.noaa.gov/data/hes/images/pdf/ATL_GULF_HURR_CLIMATOLOGY.pdf (1987).
Weinkle, J., Maue, R. & Pielke, R., Jr. Historical global tropical cyclone landfalls. J. Clim. 25, 4729–4735 (2012).
Klotzbach, P. J., Bowen, S. G., Pielke, R., Jr & Bell, M. Continental US hurricane landfall frequency and associated damage: observations and future risks. Bull. Am. Meteorol. Soc. 99, 1359–1376 (2018).
Neumann, C. An update to the National Hurricane Center “Track Book”. In Minutes of the 48th Interdepartmental Conference A-47–A-53 (Office of Fed. Coord. for Meteor. Services and Supporting Research, NOAA, 1994).
Chavas, D. land_or_ocean.m. MATLAB Central File Exchange https://www.mathworks.com/matlabcentral/fileexchange/45268-land_or_ocean-m (2020).
Schreck, C. J. III, Knapp, K. R. & Kossin, J. P. The impact of best track discrepancies on global tropical cyclone climatologies using IBTrACS. Mon. Weath. Rev. 142, 3881–3899 (2014).
Nolan, D. S., Zhang, J. A. & Uhlhorn, E. W. On the limits of estimating the maximum wind speeds in hurricanes. Mon. Weath. Rev. 142, 2814–2837 (2014).
Jin, F.-F., Boucharel, J. & Lin, I.-I. Eastern Pacific tropical cyclones intensified by El Niño delivery of subsurface ocean heat. Nature 516, 82–85 (2014).
Dunion, J. P. Rewriting the climatology of the tropical North Atlantic and Caribbean Sea atmosphere. J. Clim. 24, 893–908 (2011).
Miyamoto, Y. & Takemi, T. An effective radius of the sea surface enthalpy flux for the maintenance of a tropical cyclone. Atmos. Sci. Lett. 11, 278–282 (2010).
Yuan, S., Zhong, Z., Yao, H., Yuan, W. & Xiaodan, W. The dynamic and thermodynamic effects of relative and absolute sea surface temperature on tropical cyclone intensity. J. Meteor. Res. 27, 40–49 (2013).
Riehl, H. Tropical Meteorology (McGraw-Hill, 1954).
Holland, G. J., Belanger, J. I. & Fritz, A. A revised model for radial profiles of hurricane winds. Mon. Weath. Rev. 138, 4393–4401 (2010).
Khairoutdinov, M. & Emanuel, K. Rotating radiative-convective equilibrium simulated by a cloud-resolving model. J. Adv. Model. Earth Syst. 5, 816–825 (2013).
Chavas, D. R. & Emanuel, K. Equilibrium tropical cyclone size in an idealized state of axisymmetric radiative–convective equilibrium. J. Atmos. Sci. 71, 1663–1680 (2014).
Chavas, D. R., Lin, N., Dong, W. & Lin, Y. Observed tropical cyclone size revisited. J. Clim. 29, 2923–2939 (2016).
Lanzante, J. R. Uncertainties in tropical-cyclone translation speed. Nature 570, E6–E15 (2019).
Yule, U. & Kendall, M. An Introduction To The Theory Of Statistics Ch. 12 (Griffin and Company, 1950).
Evans, C. et al. The extratropical transition of tropical cyclones. Part I: Cyclone evolution and direct impacts. Mon. Weath. Rev. 145, 4317–4344 (2017).
Lee, S. H., Williams, P. D. & Frame, T. H. Increased shear in the North Atlantic upper-level jet stream over the past four decades. Nature 572, 639–642 (2019).
Fairall, C., Bradley, E. F., Hare, J., Grachev, A. & Edson, J. Bulk parameterization of air-sea fluxes: updates and verification for the COARE algorithm. J. Clim. 16, 571–591 (2003).
Donelan, M. et al. On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett. 31, L18306 (2004).
Drennan, W. M., Zhang, J. A., French, J. R., McCormick, C. & Black, P. G. Turbulent fluxes in the hurricane boundary layer. Part II: Latent heat flux. J. Atmos. Sci. 64, 1103–1115 (2007).
Rotunno, R. & Emanuel, K. A. An air-sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci. 44, 542–561 (1987).
Goldenberg, S. B. & Shapiro, L. J. Physical mechanisms for the association of El Niño and West African rainfall with Atlantic major hurricane activity. J. Clim. 9, 1169–1187 (1996).
"world" - Google News
November 11, 2020 at 11:16PM
https://ift.tt/3eMn0P8
Slower decay of landfalling hurricanes in a warming world - Nature.com
"world" - Google News
https://ift.tt/3d80zBJ
https://ift.tt/2WkdbyX
Bagikan Berita Ini
0 Response to "Slower decay of landfalling hurricanes in a warming world - Nature.com"
Post a Comment