Search

Slower decay of landfalling hurricanes in a warming world - Nature.com

indonesiabei.blogspot.com
  • 1.

    Ooyama, K. Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci. 26, 3–40 (1969).

    ADS  Google Scholar 

  • 2.

    Emanuel, K. A. An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci. 43, 585–605 (1986).

    ADS  Google Scholar 

  • 3.

    Emanuel, K. Tropical cyclones. Annu. Rev. Earth Planet. Sci. 31, 75–104 (2003).

    ADS  CAS  Google Scholar 

  • 4.

    Kaplan, J. & DeMaria, M. A simple empirical model for predicting the decay of tropical cyclone winds after landfall. J. Appl. Meteorol. Climatol. 34, 2499–2512 (1995).

    ADS  Google Scholar 

  • 5.

    Kaplan, J. & DeMaria, M. On the decay of tropical cyclone winds after landfall in the New England area. J. Appl. Meteorol. Climatol. 40, 280–286 (2001).

    ADS  Google Scholar 

  • 6.

    Emanuel, K. A. The dependence of hurricane intensity on climate. Nature 326, 483–485 (1987).

    ADS  Google Scholar 

  • 7.

    Emanuel, K. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436, 686–688 (2005).

    ADS  CAS  PubMed  Google Scholar 

  • 8.

    Elsner, J. B., Kossin, J. P. & Jagger, T. H. The increasing intensity of the strongest tropical cyclones. Nature 455, 92–95 (2008).

    ADS  CAS  PubMed  Google Scholar 

  • 9.

    Knutson, T. et al. Tropical cyclones and climate change assessment: Part I. Detection and attribution. Bull. Am. Meteorol. Soc. 100, 1987–2007 (2019).

    ADS  Google Scholar 

  • 10.

    Bhatia, K. T. et al. Recent increases in tropical cyclone intensification rates. Nat. Commun. 10, 3942 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 11.

    Landsea, C. W. & Franklin, J. L. Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Weath. Rev. 141, 3576–3592 (2013).

    ADS  Google Scholar 

  • 12.

    Rayner, N. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 108, 4407 (2003).

    ADS  Google Scholar 

  • 13.

    Eliassen, A. On the Ekman layer in a circular vortex. J. Meteorol. Soc. Jpn. 49A, 784–789 (1971).

    Google Scholar 

  • 14.

    Eliassen, A. & Lystad, M. The Ekman layer of a circular vortex—a numerical and theoretical study. Geophys. Norv. 31, 1–16 (1977).

    ADS  Google Scholar 

  • 15.

    Montgomery, M. T., Snell, H. D. & Yang, Z. Axisymmetric spindown dynamics of hurricane-like vortices. J. Atmos. Sci. 58, 421–435 (2001).

    ADS  Google Scholar 

  • 16.

    Murakami, H. & Wang, B. Future change of North Atlantic tropical cyclone tracks: projection by a 20-km-mesh global atmospheric model. J. Clim. 23, 2699–2721 (2010).

    ADS  Google Scholar 

  • 17.

    Colbert, A. J., Soden, B. J., Vecchi, G. A. & Kirtman, B. P. The impact of anthropogenic climate change on North Atlantic tropical cyclone tracks. J. Clim. 26, 4088–4095 (2013).

    ADS  Google Scholar 

  • 18.

    Wallace, J. M. & Hobbs, P. V. Atmospheric Science: An Introductory Survey Vol. 92 (Elsevier, 2006).

  • 19.

    Tuleya, R. E. & Kurihara, Y. A numerical simulation of the landfall of tropical cyclones. J. Atmos. Sci. 35, 242–257 (1978).

    ADS  Google Scholar 

  • 20.

    Tuleya, R. E. Tropical storm development and decay: sensitivity to surface boundary conditions. Mon. Weath. Rev. 122, 291–304 (1994).

    ADS  Google Scholar 

  • 21.

    Simpson, R. H. & Riehl, H. The Hurricane And Its Impact (Louisiana State Univ. Press, 1981).

  • 22.

    Bloemer, M. S. Climatology and Analysis of the Decay of Tropical Cyclones Making Landfall in the US from the Atlantic Basin. Master’s thesis, Florida State Univ. (2009).

  • 23.

    Chen, J. & Chavas, D. R. The transient responses of an axisymmetric tropical cyclone to instantaneous surface roughening and drying. J. Atmos. Sci. 77, 2807–2834 (2020).

    ADS  Google Scholar 

  • 24.

    Smith, S. W. The Scientist And Engineer’s Guide To Digital Signal Processing Ch. 15 (California Technical Pub., 1997).

  • 25.

    Bryan, G. H. & Fritsch, J. M. A benchmark simulation for moist nonhydrostatic numerical models. Mon. Weath. Rev. 130, 2917–2928 (2002).

    ADS  Google Scholar 

  • 26.

    Bryan, G. H. & Rotunno, R. The maximum intensity of tropical cyclones in axisymmetric numerical model simulations. Mon. Weath. Rev. 137, 1770–1789 (2009).

    ADS  Google Scholar 

  • 27.

    Bryan, G. H. Effects of surface exchange coefficients and turbulence length scales on the intensity and structure of numerically simulated hurricanes. Mon. Weath. Rev. 140, 1125–1143 (2012).

    ADS  Google Scholar 

  • 28.

    Emanuel, K. Assessing the present and future probability of hurricane Harvey’s rainfall. Proc. Natl Acad. Sci. USA 114, 12681–12684 (2017).

    ADS  CAS  PubMed  Google Scholar 

  • 29.

    Keellings, D. & Hernández Ayala, J. J. Extreme rainfall associated with hurricane Maria over Puerto Rico and its connections to climate variability and change. Geophys. Res. Lett. 46, 2964–2973 (2019).

    ADS  Google Scholar 

  • 30.

    Kossin, J. P. A global slowdown of tropical-cyclone translation speed. Nature 558, 104–107 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 31.

    Zhang, G., Murakami, H., Knutson, T. R., Mizuta, R. & Yoshida, K. Tropical cyclone motion in a changing climate. Sci. Adv. 6, eaaz7610 (2020).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 32.

    Elsner, J. B. Tracking hurricanes. Bull. Am. Meteorol. Soc. 84, 353–356 (2003).

    ADS  Google Scholar 

  • 33.

    Kossin, J. P., Camargo, S. J. & Sitkowski, M. Climate modulation of North Atlantic hurricane tracks. J. Clim. 23, 3057–3076 (2010).

    ADS  Google Scholar 

  • 34.

    Rogers, R. E. & Davis, R. E. The effect of coastline curvature on the weakening of Atlantic tropical cyclones. Int. J. Climatol. 13, 287–299 (1993).

    Google Scholar 

  • 35.

    Kossin, J. P., Emanuel, K. A. & Vecchi, G. A. The poleward migration of the location of tropical cyclone maximum intensity. Nature 509, 349–352 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 36.

    Ho, F. P., Su, J. C., Hanevich, K. L., Smith, R. J. & Richards, F. P. Hurricane climatology for the Atlantic and Gulf coasts of the United States. NOAA Technical Report NWS 38, https://coast.noaa.gov/data/hes/images/pdf/ATL_GULF_HURR_CLIMATOLOGY.pdf (1987).

  • 37.

    Weinkle, J., Maue, R. & Pielke, R., Jr. Historical global tropical cyclone landfalls. J. Clim. 25, 4729–4735 (2012).

    ADS  Google Scholar 

  • 38.

    Klotzbach, P. J., Bowen, S. G., Pielke, R., Jr & Bell, M. Continental US hurricane landfall frequency and associated damage: observations and future risks. Bull. Am. Meteorol. Soc. 99, 1359–1376 (2018).

    ADS  Google Scholar 

  • 39.

    Neumann, C. An update to the National Hurricane Center “Track Book”. In Minutes of the 48th Interdepartmental Conference A-47–A-53 (Office of Fed. Coord. for Meteor. Services and Supporting Research, NOAA, 1994).

  • 40.

    Chavas, D. land_or_ocean.m. MATLAB Central File Exchange https://www.mathworks.com/matlabcentral/fileexchange/45268-land_or_ocean-m (2020).

  • 41.

    Schreck, C. J. III, Knapp, K. R. & Kossin, J. P. The impact of best track discrepancies on global tropical cyclone climatologies using IBTrACS. Mon. Weath. Rev. 142, 3881–3899 (2014).

    ADS  Google Scholar 

  • 42.

    Nolan, D. S., Zhang, J. A. & Uhlhorn, E. W. On the limits of estimating the maximum wind speeds in hurricanes. Mon. Weath. Rev. 142, 2814–2837 (2014).

    ADS  Google Scholar 

  • 43.

    Jin, F.-F., Boucharel, J. & Lin, I.-I. Eastern Pacific tropical cyclones intensified by El Niño delivery of subsurface ocean heat. Nature 516, 82–85 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 44.

    Dunion, J. P. Rewriting the climatology of the tropical North Atlantic and Caribbean Sea atmosphere. J. Clim. 24, 893–908 (2011).

    ADS  Google Scholar 

  • 45.

    Miyamoto, Y. & Takemi, T. An effective radius of the sea surface enthalpy flux for the maintenance of a tropical cyclone. Atmos. Sci. Lett. 11, 278–282 (2010).

    ADS  Google Scholar 

  • 46.

    Yuan, S., Zhong, Z., Yao, H., Yuan, W. & Xiaodan, W. The dynamic and thermodynamic effects of relative and absolute sea surface temperature on tropical cyclone intensity. J. Meteor. Res. 27, 40–49 (2013).

    Google Scholar 

  • 47.

    Riehl, H. Tropical Meteorology (McGraw-Hill, 1954).

  • 48.

    Holland, G. J., Belanger, J. I. & Fritz, A. A revised model for radial profiles of hurricane winds. Mon. Weath. Rev. 138, 4393–4401 (2010).

    ADS  Google Scholar 

  • 49.

    Khairoutdinov, M. & Emanuel, K. Rotating radiative-convective equilibrium simulated by a cloud-resolving model. J. Adv. Model. Earth Syst. 5, 816–825 (2013).

    ADS  Google Scholar 

  • 50.

    Chavas, D. R. & Emanuel, K. Equilibrium tropical cyclone size in an idealized state of axisymmetric radiative–convective equilibrium. J. Atmos. Sci. 71, 1663–1680 (2014).

    ADS  Google Scholar 

  • 51.

    Chavas, D. R., Lin, N., Dong, W. & Lin, Y. Observed tropical cyclone size revisited. J. Clim. 29, 2923–2939 (2016).

    ADS  Google Scholar 

  • 52.

    Lanzante, J. R. Uncertainties in tropical-cyclone translation speed. Nature 570, E6–E15 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 53.

    Yule, U. & Kendall, M. An Introduction To The Theory Of Statistics Ch. 12 (Griffin and Company, 1950).

  • 54.

    Evans, C. et al. The extratropical transition of tropical cyclones. Part I: Cyclone evolution and direct impacts. Mon. Weath. Rev. 145, 4317–4344 (2017).

    ADS  Google Scholar 

  • 55.

    Lee, S. H., Williams, P. D. & Frame, T. H. Increased shear in the North Atlantic upper-level jet stream over the past four decades. Nature 572, 639–642 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 56.

    Fairall, C., Bradley, E. F., Hare, J., Grachev, A. & Edson, J. Bulk parameterization of air-sea fluxes: updates and verification for the COARE algorithm. J. Clim. 16, 571–591 (2003).

    ADS  Google Scholar 

  • 57.

    Donelan, M. et al. On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett. 31, L18306 (2004).

    ADS  Google Scholar 

  • 58.

    Drennan, W. M., Zhang, J. A., French, J. R., McCormick, C. & Black, P. G. Turbulent fluxes in the hurricane boundary layer. Part II: Latent heat flux. J. Atmos. Sci. 64, 1103–1115 (2007).

    ADS  Google Scholar 

  • 59.

    Rotunno, R. & Emanuel, K. A. An air-sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci. 44, 542–561 (1987).

    ADS  Google Scholar 

  • 60.

    Goldenberg, S. B. & Shapiro, L. J. Physical mechanisms for the association of El Niño and West African rainfall with Atlantic major hurricane activity. J. Clim. 9, 1169–1187 (1996).

    ADS  Google Scholar 

  • Let's block ads! (Why?)



    "world" - Google News
    November 11, 2020 at 11:16PM
    https://ift.tt/3eMn0P8

    Slower decay of landfalling hurricanes in a warming world - Nature.com
    "world" - Google News
    https://ift.tt/3d80zBJ
    https://ift.tt/2WkdbyX

    Bagikan Berita Ini

    0 Response to "Slower decay of landfalling hurricanes in a warming world - Nature.com"

    Post a Comment

    Powered by Blogger.