Search

Environmental drivers of megafauna and hominin extinction in Southeast Asia - Nature.com

indonesiabei.blogspot.com
  • 1.

    Détroit, F. et al. A new species of Homo from the Late Pleistocene of the Philippines. Nature 568, 181–186 (2019).

    PubMed  Article  ADS  CAS  Google Scholar 

  • 2.

    Kaifu, Y. Archaic hominin populations in Asia before the arrival of modern humans: their phylogeny and implications for the “Southern Denisovans”. Curr. Anthropol. 58, S418–S433 (2017).

    Article  Google Scholar 

  • 3.

    Reich, D. et al. Denisova admixture and the first modern human dispersals into Southeast Asia and Oceania. Am. J. Hum. Genet. 89, 516–528 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 4.

    Louys, J., Curnoe, D. & Tong, H. Characteristics of Pleistocene megafauna extinctions in Southeast Asia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 243, 152–173 (2007).

    Article  Google Scholar 

  • 5.

    Klein, R. G. Stable carbon isotopes and human evolution. Proc. Natl Acad. Sci. USA 110, 10470–10472 (2013).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 6.

    Cerling, T. E. et al. Woody cover and hominin environments in the past 6 million years. Nature 476, 51–56 (2011).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 7.

    Heaney, L. R. in Tropical Forests and Climate (ed. Myers, N.) 53–61 (Springer, 1991).

  • 8.

    Bird, M. I., Taylor, D. & Hunt, C. Palaeoenvironments of insular Southeast Asia during the Last Glacial Period: a savanna corridor in Sundaland? Quat. Sci. Rev. 24, 2228–2242 (2005).

    Article  ADS  Google Scholar 

  • 9.

    Louys, J. & Turner, A. Environment, preferred habitats and potential refugia for Pleistocene Homo in Southeast Asia. C. R. Palevol 11, 203–211 (2012).

    Article  Google Scholar 

  • 10.

    Dennell, R. & Roebroeks, W. An Asian perspective on early human dispersal from Africa. Nature 438, 1099–1104 (2005).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 11.

    van den Bergh, G. D., de Vos, J. & Sondaar, P. Y. The Late Quaternary palaeogeography of mammal evolution in the Indonesian Archipelago. Palaeogeogr. Palaeoclimatol. Palaeoecol. 171, 385–408 (2001).

    Article  Google Scholar 

  • 12.

    Steiper, M. E. Population history, biogeography, and taxonomy of orangutans (Genus: Pongo) based on a population genetic meta-analysis of multiple loci. J. Hum. Evol. 50, 509–522 (2006).

    PubMed  Article  Google Scholar 

  • 13.

    Patel, R. P. et al. Two species of Southeast Asian cats in the genus Catopuma with diverging histories: an island endemic forest specialist and a widespread habitat generalist. R. Soc. Open Sci. 3, 160350 (2016).

    PubMed  PubMed Central  Article  ADS  Google Scholar 

  • 14.

    Cannon, C. H., Morley, R. J. & Bush, A. B. G. The current refugial rainforests of Sundaland are unrepresentative of their biogeographic past and highly vulnerable to disturbance. Proc. Natl Acad. Sci. USA 106, 11188–11193 (2009).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 15.

    Sun, X., Li, X., Luo, Y. & Chen, X. The vegetation and climate at the last glaciation on the emerged continental shelf of the South China Sea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 160, 301–316 (2000).

    Article  Google Scholar 

  • 16.

    Louys, J. & Meijaard, E. Palaeoecology of Southeast Asian megafauna-bearing sites from the Pleistocene and a review of environmental changes in the region. J. Biogeogr. 37, 1432–1449 (2010).

    Google Scholar 

  • 17.

    Raes, N. et al. Historical distribution of Sundaland’s dipterocarp rainforests at Quaternary glacial maxima. Proc. Natl Acad. Sci. USA 111, 16790–16795 (2014).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 18.

    Handiani, D. et al. Tropical vegetation response to Heinrich Event 1 as simulated with the UVic ESCM and CCSM3. Clim. Past Discuss. 8, 5359–5387 (2012).

    Article  ADS  Google Scholar 

  • 19.

    Chabangborn, A., Brandefelt, J. & Wohlfarth, B. Asian monsoon climate during the Last Glacial Maximum: palaeo-data–model comparisons: LGM Asian monsoon climate. Boreas 43, 220–242 (2014).

    Article  Google Scholar 

  • 20.

    Levin, N. E. et al. Herbivore enamel carbon isotopic composition and the environmental context of Ardipithecus at Gona, Ethiopia. Geol. S. Am. S. 446, 215–235 (2008).

    Google Scholar 

  • 21.

    Cerling, T. E., Hart, J. A. & Hart, T. B. Stable isotope ecology in the Ituri Forest. Oecologia 138, 5–12 (2004).

    PubMed  Article  ADS  Google Scholar 

  • 22.

    Secord, R., Wing, S. L. & Chew, A. Stable isotopes in early Eocene mammals as indicators of forest canopy structure and resource partitioning. Paleobiology 34, 282–300 (2008).

    Article  Google Scholar 

  • 23.

    Fannin, L. D. & McGraw, W. S. Does oxygen stable isotope composition in primates vary as a function of vertical stratification or folivorous behaviour? Folia Primatol. 91, 219–227 (2020).

    PubMed  Article  Google Scholar 

  • 24.

    Clark, P. U. et al. The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2. Quat. Sci. Rev. 25, 3150–3184 (2006).

    Article  ADS  Google Scholar 

  • 25.

    Sarr, A. C. et al. Subsiding Sundaland. Geology 47, 119–122 (2019).

    Article  ADS  Google Scholar 

  • 26.

    Di Nezio, P. N. et al. The climate response of the Indo-Pacific warm pool to glacial sea level. Paleoceanogr 31, 866–894 (2016).

    Article  ADS  Google Scholar 

  • 27.

    Roberts, P. et al. Isotopic evidence for initial coastal colonization and subsequent diversification in the human occupation of Wallacea. Nat. Commun. 11, 2068 (2020).

    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

  • 28.

    Barker, G. & Farr, L. E. Archaeological Investigations in the Niah Caves, Sarawak, The Archaeology of Niah Caves, Sarawak (McDonald Institute Monographs, 2016).

  • 29.

    Piper, P. J. & Rabett, R. J. Hunting in a tropical rainforest: evidence from the Terminal Pleistocene at Lobang Hangus, Niah Caves, Sarawak. Int. J. Osteoarchaeol. 19, 551–565 (2009).

    Article  Google Scholar 

  • 30.

    Steiner, C. C., Houck, M. L. & Ryder, O. A. Genetic variation of complete mitochondrial genome sequences of the Sumatran rhinoceros (Dicerorhinus sumatrensis). Conserv. Genet. 19, 397–408 (2018).

    CAS  Article  Google Scholar 

  • 31.

    Sodhi, N. S., Koh, L. P., Brook, B. W. & Ng, P. K. Southeast Asian biodiversity: an impending disaster. Trends Ecol. Evol. 19, 654–660 (2004).

    PubMed  Article  Google Scholar 

  • 32.

    Spehar, S. N. et al. Orangutans venture out of the rainforest and into the Anthropocene. Sci. Adv. 4, e1701422 (2018).

    PubMed  PubMed Central  Article  ADS  Google Scholar 

  • 33.

    Craig, H. The geochemistry of the stable carbon isotope. Geochim. Cosmochim. Acta 3, 53–92 (1953).

    CAS  Article  ADS  Google Scholar 

  • 34.

    Smith, B. N. & Epstein, S. Two categories of 13C/12C ratios for higher plants. Plant Physiol. 47, 380–384 (1971).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 35.

    Tieszen, L. L. Natural variations in the carbon isotope values of plants: implications for archaeology, ecology, and paleoecology. J. Archaeol. Sci. 18, 227–248 (1991).

    Article  Google Scholar 

  • 36.

    Sponheimer, M. et al. Do “savanna” chimpanzees consume C4 resources? J. Hum. Evol. 51, 128–133 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 37.

    Sponheimer, M. et al. Isotopic evidence of early hominin diets. Proc. Natl Acad. Sci. USA 110, 10513–10518 (2013).

    CAS  Article  ADS  Google Scholar 

  • 38.

    Codron, J. et al. Stable isotope series from elephant ivory reveal lifetime histories of a true dietary generalist. Proc. R. Soc. Lond. B 279, 2433–2441 (2012).

    Google Scholar 

  • 39.

    Crowley, B. E. et al. Extinction and ecology retreat in a community of primates. Proc. R. Soc. Lond. B 279, 3597–3605 (2012).

    Google Scholar 

  • 40.

    Farquhar, G. D., Ehleringer, J. R. & Hubick, K. T. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 503–537 (1989).

    CAS  Article  Google Scholar 

  • 41.

    van der Merwe, N. J. & Medina, E. The canopy effect, carbon isotope ratios and foodwebs in Amazonia. J. Archaeol. Sci. 18, 249–259 (1991).

    Article  Google Scholar 

  • 42.

    Pearcy, R. W. & Pfitsch, W. A. Influence of sunflecks on the δ13C of Adenocaulon bicolor plants occurring in contrasting forest understory microsites. Oecologia 86, 457–462 (1991).

    PubMed  Article  ADS  Google Scholar 

  • 43.

    Bonafini, M., Pellegrini, M., Ditchfield, P. & Pollard A. M. Investigation of the ‘canopy effect’ in the isotope ecology of temperate woodlands. J. Archaeol. Sci. 40, 3926–3935 (2013).

    Article  Google Scholar 

  • 44.

    Ehleringer, J. R., Rundel, P. W. & Nagy, K. A. Stable isotopes in physiological ecology and food web research. Trends Ecol. Evol. 1, 42–45 (1986).

    CAS  PubMed  Article  Google Scholar 

  • 45.

    van der Merwe, N. J. & Medina, E. Photosynthesis and 13C/12C ratios in Amazonian rainforests. Geochim. Cosmochim. Acta 53, 1091–1094 (1989).

    Article  ADS  Google Scholar 

  • 46.

    Ometto, J. P. H. B. et al. The stable carbon and nitrogen isotopic composition of vegetation in tropical forests of the Amazon Basin, Brazil. Biogeochemistry 79, 251–274 (2006).

    CAS  Article  Google Scholar 

  • 47.

    Gonfiantini, R., Gratziu, S. & Tongiorgi, E. in Isotopes and Radiation in Soil Plant Nutrition Studies (Technical Report Series No. 206) (ed. Joint FAO/IAEA Division of Atomic Energy in Agriculture) 405–410 (Isotope Atomic Energy Commission, 1965).

  • 48.

    Flanagan, L. B., Comstock, J. P. & Ehleringer, J. R. Comparison of modelled and observed environmental influences on the stable oxygen and hydrogen isotope composition of leaf water in Phaseolus vulgaris L. Plant Physiol. 96, 588–596 (1991).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 49.

    Yakir, D., Berry, J. A., Giles, L. & Osmond, C. B. Isotopic heterogeneity of water in transpiring leaves: Identification of the component that controls the δ18O of atmospheric O2 and CO2. Plant Cell Environ. 17, 73–80 (1994).

    CAS  Article  Google Scholar 

  • 50.

    Sheshshayee, M. S. et al. Oxygen isotope enrichment (Δ18O) as a measure of time-averaged transpiration rate. J. Exp. Bot. 56, 3033–3039 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 51.

    Buchmann, N. & Ehleringer, J. R. CO2 concentration profiles, and carbon and oxygen isotopes in C3 and C4 crop canopies. Agric. For. Meteorol. 89, 45–58 (1998).

    Article  ADS  Google Scholar 

  • 52.

    Buchmann, N., Guehl, J. M., Barigah, T. S. & Ehleringer, J. R. Interseasonal comparison of CO2 concentrations, isotopic composition, and carbon dynamics in an Amazonian rainforest (French Guiana). Oecologia 110, 120–131 (1997).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 53.

    da Silveira, L., Sternberg, L., Mulkey, S. S. & Joseph Wright, S. Oxygen isotope ratio stratification in a tropical moist forest. Oecologia 81, 51–56 (1989).

    PubMed  Article  ADS  Google Scholar 

  • 54.

    McCarroll, D. & Loader, N. J. in Isotopes in Palaeonvironmental Research (ed. Leng, M. J.) 67–116 (Springer, 2006).

  • 55.

    Carter, M. L. & Bradbury, M. W. Oxygen isotope ratios in primate bone carbonate reflect amount of leaves and vertical stratification in the diet. Am. J. Primatol. 78, 1086–1097 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 56.

    Kohn, M. J., Schoeninger, M. J. & Valley, J. W. Herbivore tooth oxygen isotope compositions: effects of diet and physiology. Geochim. Cosmochim. Acta 60, 3889–3896 (1996).

    CAS  Article  ADS  Google Scholar 

  • 57.

    Levin, N. E., Cerling, T. E., Passey, B. H., Harris, J. M. & Ehleringer, J. R. A stable isotope aridity index for terrestrial environments. Proc. Natl Acad. Sci. USA 103, 11201–11205 (2006).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 58.

    Lee-Thorp, J. et al. Isotopic evidence for an early shift to C4 resources by Pliocene hominins in Chad. Proc. Natl Acad. Sci. USA 109, 20369–20372 (2012).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 59.

    Roberts, P. et al. Fruits of the forest: Human stable isotope ecology and rainforest adaptations in Late Pleistocene and Holocene (<36 to 3 ka) Sri Lanka. J. Hum. Evol. 106, 102–118 (2017).

    PubMed  Article  Google Scholar 

  • 60.

    Snoeck, C. & Pellegrini, M. Comparing bioapatite carbonate pre-treatments for isotopic measurements: part 1 – impact on structure and chemical composition. Chem. Geol. 417, 394–403 (2015).

    CAS  Article  ADS  Google Scholar 

  • 61.

    Pellegrini, M. & Snoeck, C. Comparing bioapatite carbonate pre-treatments for isotopic measurements: part 2 – impact on carbon and oxygen isotope compositions. Chem. Geol. 420, 88–96 (2016).

    CAS  Article  ADS  Google Scholar 

  • 62.

    Jiang, Q. Y., Zhao, L. X. & Hu, Y. W. Variations of fossil enamel bioapatite caused by different preparation and measurement protocols: a case study of Gigantopithecus fauna. Vertebrata PalAsiatica 58, 159–168 (2020).

    Google Scholar 

  • 63.

    Pushkina, D., Bocherens, H., Chaimanee, Y. & Jaeger, J. J. Stable carbon isotope reconstructions of diet and paleoenvironment from the late Middle Pleistocene Snake Cave in Northeastern Thailand. Naturwissenschaften 97, 299–309 (2010).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 64.

    Ma, J. et al. Isotopic evidence of foraging ecology of Asian elephant (Elephas maximus) in South China during the Late Pleistocene. Quat. Int. 443, 160–167 (2017).

    Article  Google Scholar 

  • 65.

    Ma, J. et al. Ecological flexibility and differential survival of Pleistocene Stegodon orientalis and Elephas maximus in mainland southeast Asia revealed by stable isotope (C, O) analysis. Quat. Sci. Rev. 212, 33–44 (2019).

    Article  ADS  Google Scholar 

  • 66.

    Bacon, A. M. et al. Nam Lot (MIS 5) and Duoi U’Oi (MIS 4) Southeast Asian sites revisited: zooarchaeological and isotopic evidences. Palaeogeogr. Palaeoclimatol. Palaeoecol. 512, 132–144 (2018).

    Article  Google Scholar 

  • 67.

    Bacon, A. M. et al. Testing the savannah corridor hypothesis during MIS2: the Boh Dambang hyena site in southern Cambodia. Quat. Int. 464, 417–439 (2018).

    Article  Google Scholar 

  • 68.

    Suraprasit, K. et al. Late Middle Pleistocene ecology and climate in northeastern Thailand inferred from the stable isotope analysis of Khok Sung herbivore tooth enamel and the land mammal cenogram. Quat. Sci. Rev. 193, 24–42 (2018).

    Article  ADS  Google Scholar 

  • 69.

    Suraprasit, K. et al. New fossil and isotope evidence for the Pleistocene zoogeographic transition and hypothesized savanna corridor in peninsular Thailand. Quat. Sci. Rev. 221, 105861 (2019).

    Article  Google Scholar 

  • 70.

    Bocherens, H. et al. Flexibility of diet and habitat in Pleistocene South Asian mammals: implications for the fate of the giant fossil ape Gigantopithecus. Quat. Int. 434, 148–155 (2017).

    Article  Google Scholar 

  • 71.

    Puspaningrum, M. R. et al. Isotopic reconstruction of proboscidean habitats and diets on Java since the Early Pleistocene: implications for adaptation and extinction. Quat. Sci. Rev. 228, 106007 (2020).

    Article  Google Scholar 

  • 72.

    Janssen, R. et al. Tooth enamel stable isotopes of Holocene and Pleistocene fossil fauna reveal glacial and interglacial paleoenvironments of hominins in Indonesia. Quatern. Sci. Rev. (Singap.) 144, 145–154 (2016).

    ADS  Google Scholar 

  • 73.

    Wang, W. et al. Sequence of mammalian fossils, including hominoid teeth, from the Bubing Basin caves, South China. J. Hum. Evol. 52, 370–379 (2007).

    PubMed  Article  Google Scholar 

  • 74.

    Nelson, S. V. The paleoecology of early Pleistocene Gigantopithecus blacki inferred from isotopic analyses. Am. J. Phys. Anthropol. 155, 571–578 (2014).

    Article  Google Scholar 

  • 75.

    Qu, Y. et al. Preservation assessments and carbon and oxygen isotopes analysis of tooth enamel of Gigantopithecus blacki and contemporary animals from Sahne Cave, Chongzuo, South China during the Early Pleistocene. Quat. Int. 354, 52–58 (2014).

    Article  Google Scholar 

  • 76.

    Uno, K. T. et al. Late Miocene to Pliocene carbon isotope record of differential diet change among East African herbivores. Proc. Natl Acad. Sci. USA 108, 6509–6514 (2011).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 77.

    LeGeros, R. Z. Calcium Phosphates in Oral Biology and Medicine (Monographs in Oral Science 15) (1991).

  • 78.

    Lee-Thorp, J. A. On isotopes and old bones. Archaeometry 50, 925–950 (2008).

    Article  CAS  Google Scholar 

  • 79.

    Friedli, H. et al. Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries. Nature 324, 237–238 (1986).

    CAS  Article  ADS  Google Scholar 

  • 80.

    Graven, H. et al. Compiled records of carbon isotopes in atmospheric CO2 for historical simulations in CMIP6. Geosci. Model Dev. 10, 4405–4417 (2017).

    CAS  Article  ADS  Google Scholar 

  • 81.

    Ambrose, S. H. & Norr, L. in Prehistoric Human Bone 1–37 (Springer, Berlin, Heidelberg, 1993).

  • 82.

    Cerling, T. E. & Harris, J. M. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120, 347–363 (1999).

    PubMed  Article  ADS  Google Scholar 

  • 83.

    Crowley, B. E. et al. Stable carbon and nitrogen isotope enrichment in primate tissues. Oecologia 164, 611–626 (2010).

    PubMed  PubMed Central  Article  ADS  Google Scholar 

  • 84.

    Lee-Thorp, J. A., Sealy, J. C. & van der Merwe, N. J. Stable carbon isotope ratio differences between bone collagen and bone apatite, and their relationship to diet. J. Archaeol. Sci. 16, 585–599 (1989).

    Article  Google Scholar 

  • 85.

    Kellner, C. M. & Schoeninger, M. J. A simple carbon isotope model for reconstructing prehistoric human diet. Am. J. Phys. Anthropol. 133, 1112–1127 (2007).

    PubMed  Article  Google Scholar 

  • 86.

    Karasov, W. H. & Douglas, A. E. Comparative digestive physiology. Compr. Physiol. 3, 741–783 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 87.

    Ley, R. E. et al. Evolution of mammals and their gut microbes. Science 320, 1647–1651 (2008).

    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

  • 88.

    Furness, J. B., Cottrell, J. J. & Bravo, D. M. Comparative gut physiology symposium: comparative physiology of digestion. J. Anim. Sci. 93, 485–491 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 89.

    Hammer, Ø., Harper, D. A. & Ryan, P. D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electronica 4, 9 (2001).

    Google Scholar 

  • 90.

    Cleveland, W. S. Robust locally weighted fitting and smoothing scatterplots. J. Am. Stat. Assoc. 74, 829–836 (1979).

    MATH  Article  Google Scholar 

  • 91.

    Cleveland, W. S. A program for smoothing scatterplots by robust locally weighted fitting. Am. Stat. 35, 54 (1981).

    Article  Google Scholar 

  • 92.

    Lisiecki, L. E., & Raymo M. E. A. Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanogr. 20, PA1003 (2005).

    ADS  Google Scholar 

  • 93.

    Pickering, R. et al. U–Pb-dated flowstones restrict South African early hominin record to dry climate phases. Nature 565, 226–229 (2019).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 94.

    Chuan, G. K. in The Physical Geography of Southeast Asia (ed. Gupta, A.) 80–93 (Oxford Univ. Press, 2005).

  • 95.

    Candy, I. et al. Pronounced warmth during early Middle Pleistocene interglacials: investigating the Mid-Brunhes Event in the British terrestrial sequence. Earth Sci. Rev. 103, 183–196 (2010).

    Article  ADS  Google Scholar 

  • 96.

    Meckler, A. N., Clarkson, M. O., Cobb, K. M., Sodemann, H. & Adkins, J. F. Interglacial hydroclimate in the tropical west Pacific through the Late Pleistocene. Science 336, 1301–1304 (2012).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 97.

    Cheng, H. et al. The Asian monsoon over the past 640,000 years and ice age terminations. Nature 534, 640–646 (2016).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 98.

    Maloney, B. K. & McCormac, F. G. Palaeoenvironments of north Sumatra: a 30,000 year old pollen record from Pea Bullok. Bull. Indo-Pacific Prehist. Ass. 14, 73–82 (1996).

    Google Scholar 

  • 99.

    van der Kaars, W. A. & Dam, M. A. C. A. 135,000-year record of vegetational and climatic change from the Bandung area, West-Java, Indonesia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 117, 55–72 (1995).

    Article  Google Scholar 

  • 100.

    van der Kaars, W. A. & Dam, M. A. C. Vegetation and climate change in West-Java, Indonesia during the last 135,000 years. Quat. Int. 37, 67–71 (1997).

    Article  Google Scholar 

  • 101.

    Wurster, C. M. et al. Forest contraction in north equatorial Southeast Asia during the last glacial period. Proc. Natl Acad. Sci. USA 107, 15508–15511 (2010).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 102.

    Wurster, C. M., Rifai, H., Zhou, B., Haig, J. & Bird, M. I. Savanna in equatorial Borneo during the Late Pleistocene. Sci. Rep. 9, 6392 (2019).

    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

  • 103.

    Dubois, N. et al. Indonesian vegetation response to changes in rainfall seasonality over the past 25,000 years. Nat. Geosci. 7, 513–517 (2014).

    CAS  Article  ADS  Google Scholar 

  • 104.

    Sun, X. et al. Deep-sea pollen from the South China Sea: Pleistocene indicators of East Asian monsoon. Mar. Geol. 201, 97–118 (2003).

    CAS  Article  ADS  Google Scholar 

  • 105.

    Yu, S. et al. Pollen record in the northwestern continental shelf of the South China Sea in the past 82 ka: paleoenvironmental changes in the last glacial period. J. Asian Earth Sci. 199, 104457 (2020).

    Article  Google Scholar 

  • 106.

    IUCN. The IUCN Red List of Threatened Species. Version 2019-3 http://www.iucnredlist.org (accessed 6 November 2019).

  • 107.

    Yang, D. et al. Researches of Ailuropoda–Stegodon Fauna from Gulin China (in Chinese with English abstract) (Chongqing, 1995).

  • 108.

    Turvey, S. T. et al. Holocene survival of Late Pleistocene megafauna in China: a critical review of the evidence. Quat. Sci. Rev. 76, 156–166 (2013).

    Article  ADS  Google Scholar 

  • 109.

    Jin, C. et al. Chronological sequence of the early Pleistocene Gigantopithecus faunas from cave sites in the Chongzuo, Zuojiang River area, South China. Quat. Int. 354, 4–14 (2014).

    Article  Google Scholar 

  • 110.

    Rizal, Y. et al. Last appearance of Homo erectus at Ngandong, Java, 117,000–108,000 years ago. Nature 577, 381–385 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 111.

    Joordens, J. C. et al. Homo erectus at Trinil on Java used shells for tool production and engraving. Nature 518, 228–231 (2015).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 112.

    Zhang, Y. et al. New 400–320 ka Gigantopithecus blacki remains from Hejiang Cave, Chongzuo City, Guangxi, South China. Quat. Int. 354, 35–45 (2014).

    Article  Google Scholar 

  • 113.

    Han, D. & Xu, C. in Palaeoanthropology and Palaeolithic Archaeology in the People’s Republic of China (eds Rukang, W. & Olsen, J. W.) 267–289 (Academic, 1985).

  • 114.

    Lu, C., Xu, X. & Sun, X. Re-dating Changyang Cave in Hubei Province, southern China. Quat. Int. 537, 1–8 (2020).

    Article  Google Scholar 

  • 115.

    van den Bergh, G. D. et al. The Early Pleistocene terrestrial vertebrate faunal sequence of Java, Indonesia. J. Vert. Paleol. Abstract 210 (2019).

  • 116.

    Dong, W. et al. New materials of Early Pleistocene Sus from Sanhe Cave, Chongzuo, Guangxi, South China. Acta Anthropol. Sin. 32, 63–76 (2013).

    Google Scholar 

  • 117.

    Shao, Q. et al. Coupled ESR and U-series dating of early Pleistocene Gigantopithecus faunas at Mohui and Sanhe Caves, Guangxi, southern China. Quat. Geochronol. 30, 524–528 (2015).

    Article  Google Scholar 

  • 118.

    Rink, W. J., Wei, W., Bekken, D. & Jones, H. L. Geochronology of Ailuropoda–Stegodon fauna and Gigantopithecus in Guangxi Province, southern China. Quat. Res. 69, 377–387 (2008).

    CAS  Article  Google Scholar 

  • 119.

    Wang, Y., Jin, C. Z. & Mead, J. I. New remains of Sinomastodon yangziensis (Proboscidea, Gomphotheriidae) from Sanhe karst cave, with discussion on the evolution of Pleistocene Sinomastodon in South China. Quat. Int. 339–340, 90–96 (2014).

    Article  Google Scholar 

  • 120.

    Duval, M. et al. Direct ESR dating of the Pleistocene vertebrate assemblage from Khok Sung locality, Nakhon Ratchasima Province, Northeast Thailand. Pal. Electr. 22, 1–25 (2019).

    Google Scholar 

  • 121.

    Li, H., Li, C. & Kuman, K. Longgudong, an Early Pleistocene site in Jianshi, South China, with stratigraphic association of human teeth and lithics. Sci. China Earth Sci. 60, 452–462 (2017).

    CAS  ADS  Google Scholar 

  • 122.

    Bacon, A. M. et al. Late Pleistocene mammalian assemblages of Southeast Asia: new dating, mortality profiles and evolution of the predator–prey relationships in an environmental context. Palaeogeogr. Palaeoclimatol. Palaeoecol. 422, 101–127 (2015).

    Article  Google Scholar 

  • 123.

    Westaway, K. E. et al. Age and biostratigraphic significance of the Punung rainforest fauna, East Java, Indonesia, and implications for Pongo and Homo. J. Hum. Evol. 53, 709–717 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 124.

    Matsu’ura, S. et al. Age control of the first appearance datum for Javanese Homo erectus in the Sangiran area. Science 367, 210–214 (2020).

    PubMed  ADS  Google Scholar 

  • 125.

    Sun, L. et al. Magnetochronological sequence of the early Pleistocene Gigantopithecus faunas in Chongzuo, Guangxi, southern China. Quat. Int. 354, 15–23 (2014).

    Article  Google Scholar 

  • 126.

    Esposito, M., Reyss, J. L., Chaimanee, Y. & Jaeger, J. J. U-series dating of fossil teeth and carbonates from Snake Cave, Thailand. J. Archaeol. Sci. 29, 341–349 (2002).

    Article  Google Scholar 

  • 127.

    Storm, P. et al. U-series and radiocarbon analyses of human and faunal remains from Wajak, Indonesia. J. Hum. Evol. 64, 356–365 (2013).

    PubMed  Article  Google Scholar 

  • Let's block ads! (Why?)



    "asia" - Google News
    October 07, 2020 at 10:07PM
    https://ift.tt/3jzGech

    Environmental drivers of megafauna and hominin extinction in Southeast Asia - Nature.com
    "asia" - Google News
    https://ift.tt/2YpEquI
    https://ift.tt/2WkdbyX

    Bagikan Berita Ini

    0 Response to "Environmental drivers of megafauna and hominin extinction in Southeast Asia - Nature.com"

    Post a Comment

    Powered by Blogger.